Información de la revista
Vol. 55. Núm. 6.
Páginas 524-534 (diciembre 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 55. Núm. 6.
Páginas 524-534 (diciembre 2001)
Acceso a texto completo
Aproximación diagnóstica y tratamiento de los errores innatos de la oxidación mitocondrial de los ácidos grasos
Diagnostic approach and treatment of inherited mitochondrial fatty acid oxidation disorders
Visitas
14491
L. Peña Quintanaa, P. Sanjurjo Crespob,
Autor para correspondencia
med004137@nacom.es

Correspondencia: Dr. L. Peña Quintana. Hospital Universitario Materno-Infantil de Canarias. Avda. Marítima del Sur, s/n. 35016 Las Palmas de Gran Canaria.
a Unidad de Gastroenterología y Nutrición Infantil. Hospital Universitario Materno-Infantil de Canarias.
b Unidad de Metabolismo. Hospital de Cruces.
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Los errores congénitos de la oxidación mitocondrial de los ácidos grasos son un grupo complejo de enfermedades, en el que se incluyen en la actualidad hasta 22 diferentes entidades. Son de base genética, con una incidencia probablemente subestimada, debiéndose tener un alto índice de sospecha diagnóstica para su detección. Su espectro clínico y pronóstico son variables, habiendo disminuido su mortalidad tras su mejor estudio y tratamiento. Una característica común es la hipoglucemia hipocetósica; aunque no es constante y no aparece en los errores de cadena corta y en ocasiones en los de cadena media. Es característica la miopatía cardíaca o esquelética y/o con afectación hepática en períodos de descompensación metabólica, ya que estos tejidos son dependientes de la oxidación de los ácidos grasos. El diagnóstico se ha simplificado con el estudio de las acilcarnitinas en sangre, incluso en períodos de estabilidad metabólica. La determinación de acilglicinas, ácidos orgánicos, carnitina, ácidos grasos libres y 3-hidroxiácidos completaría el diagnóstico, unido al estudio enzimático y genético. En determinadas situaciones se debe recurrir a las pruebas de provocación. El tratamiento consistirá básicamente en evitar el ayuno, la restricción del aporte graso y en un incremento de los hidratos de carbono, dependiendo del tipo de error metabólico, al que se puede añadir el farmacológico (carnitina, riboflavina y carbamilglutamato).

Palabras clave::
Errores de la oxidación de los ácidos grasos Mitocondria

Inherited mitochondrial fatty acid oxidation disorders are a complex set of genetically-based diseases in which up to 22 different entities are currently recognized. Their incidence is probably underestimated because a high level of diagnostic suspicion is required for their detection. Their clinical spectrum and prognosis are variable. In recent years knowledge of these diseases and improved treatment have reduced associated mortality. A common characteristic of all these diseases is hypoketotic hypoglycemia, although this is not constant and does not appear in the short-chain disorders and, sometimes, does not even appear in the medium-chain disorders. Cardiac or skeletal myopathy combined and/or hepatic involvement at periods of metabolic decompensation are typical, since these tissues depend on fatty acid oxidation. Diagnosis has been simplified by the study of acylcarnitines in blood, even in periods of metabolic stability. Determination of acylglycines, organic acids, carnitines, free fatty acids and 3-hydroxy-fatty acids, together with enzymic and genetic studies, complete the diagnosis. In certain circumstances, a provocation test should be carried out. Treatment basically consists of avoiding fasting, restricting fatty acid uptake and increasing carbohydrate uptake, depending on the type of metabolic disorder. Pharmacological treatment may also be added (carnitine, riboflavine or carbamylglutamate).

Key words:
Fatty acid oxidation disorders Fatty acid metabolism
El Texto completo está disponible en PDF
Bibliografía
[1.]
P. Rinaldo, K. Raymond, A. Al-Odaib, M.J. Bennett.
Clinical and biochemical features of fatty acid oxidation disorders.
Curr Opin Pediatr, 10 (1998), pp. 615-621
[2.]
C.R. Roe, P.M. Coates.
Mitochondrial fatty acid oxidation disorders.
The metabolic and molecular bases of inherited disease, 7.a ed, pp. 1553-1995
[3.]
A. Ribes, E. Riudor, B. Garavaglia, G. Martinez, A. Arranz, F. Ivernizzi, et al.
Mild or absent clinical signs in twin sisters with shortchain acyl-CoA dehydrogenase deficiency.
Eur J Pediatr, 157 (1998), pp. 317-320
[4.]
T. Tyni, T. Kivela, M. Lappi, P. Summanen, E. Nikoskelainen, H. Pihko.
Ophthalmologic findings in long-chain 3-hidroxyacyl-CoA dehidrogenase deficiency caused by the G1528C mutation.
Ophthalmology, 105 (1998), pp. 810-824
[5.]
A.W. Strauss, M.J. Bennett, P. Rinaldo, H.F. Sims, L.K. O'Brien, Y. Zhao, et al.
Inherited long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and a fetal-maternal interaction cause maternal liver disease and other pregnancy complications.
Semin Perinatol, 23 (1999), pp. 100-112
[6.]
J.A. Ibdah, M.J. Bennett, P. Rinaldo, Y. Zhao, B. Gibson, H.F. Sims, et al.
A fetal fatty-acid oxidation disorders as a cause of liver disease in pregnant women.
N Engl J Med, 340 (1999), pp. 1723-1731
[7.]
R. Pons, P. Cavadini, S. Baratta, F. Invernizzi, E. Lamantea, B. Garavaglia.
Clinical and molecular heterogeneity in very-longchain acyl-Coenzyme A dehydrogenase deficiency.
Pediatr Neurol, 22 (2000), pp. 98-105
[8.]
R.G. Boles, E.A. Buck, M.G. Blitzer, M.S. Platt, T.M. Cowan, S.K. Martin.
Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden Mdeath in first year of life.
J Pediatr, 132 (1998), pp. 924-933
[9.]
P. Rinaldo.
Mitochondrial fatty acid oxidation disorders and cyclic vomiting syndrome.
Dig Dis Sci, 44 (1999), pp. 97-102
[10.]
D. Bonnet, D. Martin, P. Lonlay, E. Villain, P. Jouvet, D. Rabier.
Arrhytmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children.
Circulation, 100 (1999), pp. 2248-2253
[11.]
C.J. Wilson, M.P. Champion, J.E. Collins, P.T. Clayton, J. Leonard.
Outcome of medium chain acyl-CoA dehidrogenase deficiency after diagnosis.
Arch Dis Child, 80 (1998), pp. 459-462
[12.]
L. Peña, N. Cetera, J.C. Ramos, M. Martí, J.C. Cabrera, N. Acosta, et al.
Evolución de dos casos con deficiencia en 3-hidroxi-acil-CoA deshidrogenasa de cadena larga.
An Esp Pediatr, 89 (1997), pp. 27-28
[13.]
R.J. Pollit.
Disorders of mitochondrial long-chain fatty acid oxidation.
J Inher Metab Dis, 18 (1995), pp. 473-490
[14.]
A.K. Iafolla, R.J. Thompson, C.R. Roe.
Medium-chain acyl-coenzyme A dehydrogenase deficiency: Clinical course in 120 affected children.
J Pediatr, 124 (1994), pp. 409-415
[15.]
C. Vianey-Saban, P. Divry, M. Brivet, M. Nada, M.Y. Zabot, M. Mathieu, et al.
Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients.
Clin Chim Acta, 269 (1998), pp. 43-62
[16.]
B. Merinero, S.I. Pascual Pascual, C. Pérez-Cerdá, J. Gangoiti, M. Castro, M.J. García, et al.
Adolescent myopathic presentation in two sisters with very long-chain acyl-CoA dehydrogenase deficiency.
J Inher Met Dis, 22 (1999), pp. 802-810
[17.]
I. Ogilvie, M. Pourfarzam, S. Jackson, C. Stockdale, K. Bartlett, D.M. Turnbull.
Very long-chain acyl coenzyme A dehydrogenase deficiency presenting with exercise-induced myoglobinuria.
Neurology, 44 (1994), pp. 467-473
[18.]
A. Mathur, H.F. Sims, D. Gopalakrishnan, B. Gibson, P. Rinaldo, J. Vockley, et al.
Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death.
Circulation, 99 (1999), pp. 1337-1343
[19.]
A. Al Odaib, B.L. Shneider, M.J. Bennett, B.R. Pober, M. Reyes-Mugica, A.L. Friedman, et al.
A defect in the transport of long-chain fatty acids associated with acute liver failure.
N Engl J Med, 339 (1998), pp. 1752-1757
[20.]
C.G. Costa, W.S. Guérand, E.A. Struys, U.A. Holwerda, H.J. Brink, I. Tavares de Almeida.
Quantitative anlysis of urinary acylglycines for the diagnosis of b-oxidation defects using GC-NCI-MS.
J Pharm Biomed Anal, 21 (2000), pp. 1215-1224
[21.]
D.H. Chace, S.L. Hillman, J.L.K. Van Hove, E.W. Naylor.
Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry.
Clin Chem, 43 (1997), pp. 2106-2113
[22.]
P.T. Clayton, M. Doig, S. Ghafari, C. Meaney, C. Taylor, J.V. Leonard, et al.
Screening for medium chain acyl-CoA dehidrogenase deficiency using electrospray ionisation tandem mass spectrometry.
Arch Dis Child, 79 (1998), pp. 109-115
[23.]
C.G. Costa, L. Dorland, U. Holwerda, I. Tavares de Almeida, B.T. Poll-The, C. Jakobs, et al.
Simultaneous analysis of plasma free fatty acids and their 3-hydroxy analogs in fatty acid b-oxidation disorders.
Clin Chem, 44 (1998), pp. 463-471
[24.]
R.J.A. Wanders, P. Vreken, M.E.J. Boer, F.A. Wijburg, A.H. Gennip, L. Ijlst.
Disorders of mitochondrial fatty acyl-CoA b-oxidation.
J Inher Met Dis, 22 (1999), pp. 442-487
[25.]
J.M. Saudubray, D. Martin, P. Lonlay, G. Touati, F. Poggi-Travert, D. Bonnet, et al.
Recognition and management of fatty acid oxidation defects: A series of 107 patients.
J Inher Met Dis, 22 (1999), pp. 488-502
[26.]
E. Schmidt-Sommerfeld, P.J. Bobrowski, D. Penn, W.J. Rhead, R.J.A. Wanders, M.J. Bennett.
Analysis of carnitine esters by radio- high performance liquid chromatography in cultured skin fibroblast from patients with mitochondrial fatty acid oxidation disorders.
Pediatr Res, 44 (1998), pp. 210-214
[27.]
E.L. Romppanen, T. Mononen, I. Mononen.
Molecular diagnosis of medium-chain acyl-CoA dehidrogenase deficiency by oligonucleotide ligation assay.
Clin Chem, 44 (1998), pp. 68-71
[28.]
B.S. Andresen, P. Bross, S. Udvari, J. Kirk, R.G.K. Gray, S. Kmock.
The molecular basis of medium-chain acyl-CoA dehidrogenase (MCAD) deficiency in compound heterozygous patients-is there a correlation between genotype and phenotypeα.
Hum Mol Genet, 6 (1997), pp. 695-708
[29.]
L. Ijlst, S. Uskikubo, T. Kamijo, T. Hashimoto, J.P.N. Ruiter, J.B.C. Klerk, et al.
Long-chain 3-hydroxyacil-CoA dehidrogenase deficiency: high frequency of the G1528C mutation wtih no apparent correlation with the clinical phenotype.
J Inher Metab Dis, 18 (1995), pp. 241-244
[30.]
T. Tyni, A. Palotie, L. Viinikka, L. Valanne, M. Salo, U. Dobeln, et al.
Long-chain 3-hydroxyacyl-conzime A dehydrogenase deficiency with the G1528C mutation: Clinical presentation of thirteen patients.
J Pediatr, 130 (1997), pp. 67-76
[31.]
B.S. Andresen, S. Olpin, B.J.H.M. Poorthuis, H.R. Scholte, C. Vianey-Saban, R. Wanders.
Clear correlation of genotype with phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.
Am J Hum Genet, 64 (1999), pp. 479-494
[32]
M. Gillingham, S. Van Calcar, D. Ney, J. Wolff, C. Harding.
Dietary management of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). A case report and survey.
J Inher Met Dis, 22 (1999), pp. 123-131
[33.]
C.A. Stanley.
Disorders of fatty acid oxidation.
Inborn Metabolic Diseases, 3.a ed, pp. 141-150
[34.]
C.O. Harding, M.B. Gillighan, S.C. Van Calcar, J.A. Wolff, J.N. Verhoeve, M.D. Mills.
Docosahexaenoic acid and retinal function in children with long chain 3-hydroxyacyl-CoA dehydrogenase deficiency.
J Inher Met Dis, 22 (1999), pp. 276-280
[35.]
Peña Quintana L, Sanjurjo Crespo P. Alteraciones de la Betaoxidación y del sistema carnitina. En: Sanjurjo P, Baldellou A, eds. Diagnóstico y tratamiento de las enfermedades metabólicas. Madrid: Ergón. (En prensa)
[36.]
C.H.R Roe, H.E. Wiltse, L. Sweetman, L.L. Alvarado.
Death caused by perioperative fasting and sedation in a child with unrecognized very long chain acyl-coenzyme A dehydrogenase deficiency.
J Pediatr, 136 (2000), pp. 397-399
Copyright © 2001. Asociación Española de Pediatría
Descargar PDF
Idiomas
Anales de Pediatría
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?