Journal Information
Vol. 53. Issue 4.
Pages 330-334 (1 October 2000)
Share
Share
Download PDF
More article options
Vol. 53. Issue 4.
Pages 330-334 (1 October 2000)
Full text access
Valores elevados de alanina aminotransferasa y colinesterasa en niños obesos prepúberes: correlación con la concentración de insulina basal e índices antropométricos
High levels of alanine aminotransferase and cholinesterase in obese pre-pubertal children: correlation with basal insulin concentration and anthropometric measures
Visits
15220
R. Martos Estepa
Corresponding author
labpozo@mx3.redestb.es

Correspondencia: Manuel Fuentes Bocanegra, 19, 6.° 1 a 14005 Córdoba.
Zona Básica de Salud Palma del Río Hospital Comarcal Valle de los Pedroches. Córdoba.
F.J. Ruz Rodrígueza, M. Valle Jiménezb, F. Gascón Lunab, F. Bermudo Guitarteb, Ramón Cañete Estradac
a Hinojosa del Duque. Córdoba. Hospital Comarcal Valle de los Pedroches. Córdoba.
b Servicio de Laboratorio Clínico. Hospital Comarcal Valle de los Pedroches. Córdoba.
c Unidad de Endocrinología Pediátrica. Hospital Reina Sofia. Córdoba
This item has received
Article information
Objetivos

Determinar si parámetros bioquímicos, utilizados en el adulto como indicadores del depósito de grasa intraabdominal (alanina aminotransferasa [ALT]), colinesterasa [ChE], gamma glutamiltransferasa [/GT], aspartato aminotransferasa [AST]), están o no elevados en obesos prepú-beres, así como valorar su posible correlación con valores basales de insulina e índices antropométricos.

Pacientes y método

Estudio de casos y controles en niños de ambos sexos (46 obesos y 49 no obesos) de 6 a 9 años. A todos los niños se les determinó el índice de masa corporal (IMC), índice cintura/cadera e índice cintura/muslo. Se cuantificó: glucosa e insulina basal, índice insulina/glucosa, ALT, AST, gGT y ChE. La comparación de medias se realizó por la t de Student. La correlación entre variables se evaluó por el coeficiente de correlación de Pearson.

Resultados

Los grupos fueron homogéneos, no presentaron diferencias significativas en la edad ni en el sexo. La concentración de glucosa fue similar en ambos grupos, en tanto que la de insulina, ALT, ChE, gGT e índice ALT/AST fueron significativamente superiores en el grupo de obesos. La concentración de ALT y de ChE se correlacionaron positivamente con la insulina, el índice insulina/glucosa, así como con el IMC e índice cintura/cadera.

Conclusiones

Parámetros bioquímicos como la ALT y la ChE pueden ser de utilidad en el niño obeso como medida indirecta del depósito de grasa. El aumento de estos parámetros depende, a esta edad, tanto de la concentración de insulina como del grado de obesidad y distribución de la grasa.

Palabras clave:
Niños prepúberes
Obesidad
Alanina aminotransferasa
Colinesterasa
Grasa intraabdominal
Keywords:
Pre-puberal children
Obesity
Alanine aminotransfera-se
Cholinesterase
Intraabdominal fat
Objective

To determine whether biochemical parameters, used in adult to indicate intraabdominal fat deposits [alanine aminotransferase (ALT), cholinesterase (ChE), gamma-glutamyltransferase (?-GT), and aspartate aminotransferase (AST)] are increased in obese pre-pubertal children and to evaluate their possible correlation with basal insulin levels and anthropometric measures.

Patients and method

Study of obese pediatric patients and controls of both sexes (46 obese and 49 not obese) aged between 6 and 9 years. Body mass index (BMI), waist/hip and waist/thigh ratio were determined in all children. Glucose and basal insulin concentrations, the insulin/glucose index, ALT, AST, #yGT and ChE were quantified in all children. Student's t-test was used to perform the mean comparison and Pearson's correlation coefficient was used to evaluate the correlation between variables.

Results

The groups were homogeneous, presenting no significant differences in age or sex. Glucose concentrations were similar in both groups, while those of insulin, ALT, ChE, #yGT and the ALT/AST index were significantly higher in the group of obese children. Concentrations of ALT and ChE were positively correlated with insulin and the insulin/glucose index, BMI, and waist/hip ratio.

Conclusions

Biochemical parameters such as ALT and ChE may be useful as indirect measure of fat deposits in obese children. In this age group, an increase in these parameters depends on insulin concentration as well as on the degree of obesity and fat distribution.

Full text is only aviable in PDF
Bibliografía
[1.]
M. Krotkiewski, P. Björntorp, L. Sjöstrom, U. Smith.
Impact of obesity on metabolism in men and women.
J Clin Invest, 72 (1983), pp. 1150-1162
[2.]
M.D. Jensen, M.W. Haymond, R.A. Rizza, P.E. Cryer, J.M. Miles.
Influence of body fat distribution on free fatty acid metabolism in obesity.
J Clin Invest, 83 (1989), pp. 1168-1173
[3.]
E. Bonora, G. Targher, M.B. Zenere, F. Saggiani, V. Cacciatori, F. Tosi.
Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona young men atherosclerosis risk factors study.
Int J Obes, 20 (1996), pp. 975-980
[4.]
M. Valle, F. Gascón, R. Martos, F.J. Ruz, F. Bermudo, R. Ríos, R. Cañete.
Infantile obesity: a situation of atherothrombotic risk?.
Metabolism, 49 (2000), pp. 672-675
[5.]
P. Bjorntorp.
Possible mechanisms relating fat distribution and metabolism.
Fat distribution during growth and later health outcomes, pp. 175-191
[6.]
H. Lundergren, C. Bengtsson, G. Blohme, L. Lapidus, L. Sjostrom.
Adiposity and adipose tissue distribution in relation to incidence of diabetes in women: results from a prospective population study in Gothenburg, Sweden.
Int J Obes, 13 (1989), pp. 413-423
[7.]
N. Kaplan.
The deadly quartet: upper body obesity, glucose intolerance, hypartriglyceridemia, and hypertension.
Arch Intern Med, 149 (1989), pp. 1514-1520
[8.]
D.S. Freedman, S.J. Jacobsen, J.J. Barboriak, K.A. Sobocinski, A.J. Anderson, A.H. Kissebah, et al.
Body fat distribution and male/female differences in lipids and lipoproteins.
Circulation, 81 (1990), pp. 1498-1506
[9.]
Y. Tazawa, H. Noguchi, F. Nishinomiya, G. Takada.
Serum alanine aminotransferase activity in obese children.
Acta Paediatr, 86 (1997), pp. 238-241
[10.]
T. Kawasaki, N. Hashimoto, T. Kikuchi, H. Takahashi, M. Uchiyama.
The relationship between fatty liver and hyperinsulinemia in obese japanese children.
J Pediatr Gastroenterol, 24 (1997), pp. 317-321
[11.]
N. Kawai, T. Kawai, K. Kawai.
Ultrasonic and laboratory studies on fatty liver in white-collar workers.
Jpn J Gastroenterol, 92 (1995), pp. 1058-1065
[12.]
K. Matsuura, K. Tobe, T. Tsuji.
Fatty liver and obesity in university students.
Jpn J Gastroenterol, 92 (1995), pp. 1743-1751
[13.]
M. Hernández, J. Castell, J.L. Narvaiza, J.M. Rincón, E. Ruiz, E. Sánchez.
Garsi, (1988),
[14.]
M. Modan, H. Halkin, S. Almong, A. Lusky, A. Eshkol, M. Shefi, et al.
Hyperinsulinemia: a link between hypertension, obesity and glucose intolerance.
J Clin Invest, 83 (1985), pp. 1305-1314
[15.]
E. Ferrannini, S.M. Haffner, B.D. Mitchell, M.P. Stern.
Hyperinsulinemia: the key feature of a cardiovascular and metabolic syndrome.
Diabetologia, 34 (1991), pp. 416-422
[16.]
G.M. Reaven.
Role of insulin resistance in human disease.
Dia-betes, 37 (1988), pp. 1595-1607
[17.]
K. Pyrala.
Hyperinsulinemia as predictor of atherosclerotic vascular disease: Epidemiological evidence.
Diabetes Metab, 17 (1991), pp. 87-92
[18.]
R.A. DeFronzo, E. Ferrannini.
Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipemia and atherosclerotic cardiovascular disease.
Diabe-tes Care, 14 (1991), pp. 173-194
[19.]
W.H. Dietz.
Critical periods in childhood for the development of obesity.
Am J Clin Nutr, 59 (1994), pp. 955-959
[20.]
M.A.A. Moussa, A.A. Shaltout, D. Nkansa-Dwamena, M. Mourad, N. Al-Sheikh, N. Agha, et al.
Association of fasting insulin with serum lipids and blood pressure in Kuwaiti children.
Meta-bolism, 47 (1998), pp. 420-424
[21.]
A.H.M.W. Islam, S. Yamashita, K. Kotani, T. Nakamura, K. Tokunaga, T. Arai, et al.
Fasting plasma insulin level is an important risk factor for the development of complications in japanese obese children. Results from a cross-sectional and a longitudinal study.
Metabolism, 44 (1995), pp. 478-485
[22.]
A. Hamsten.
The hemostatic system and coronary heart disease.
Thromb Res, 70 (1993), pp. 1-38
[23.]
P. Bjorntorp.
Possible mechanisms relating fat distribution and metabolism.
Fat distribution during growth and later health outcomes, pp. 175-191
[24.]
L. Lapidus, C. Bengtsson, B. Larsson, K. Pennert, E. Rybo, L. Sjöström.
Distribution of adipose tissue and risk of cardiovascular disease and deaht: 12 year follow-up of participants in the population study of women in Gothenburg, Sweden.
Br Med J, 289 (1984), pp. 1257-1261
[25.]
B. Larsson, D.K. Svärdsud, L. Welin, L. Wilhelmsen, P. Björntorp, G. Tibbin.
Abdominal adipose tissue distribution, obesity and risk of cardiovascular disease and deaht: 13 year follow-up of participants in the study of men born in 1913.
Br Med J, 288 (1984), pp. 1401-1404
[26.]
M. Cucuianu, T.A. Popescu, S. Haragus.
Pseudocholinesterase in obese and hyperlipemic subjects.
Clin Chim Acta, 22 (1968), pp. 151-155
[27.]
J.P. Després.
Assessing obesity: beyond the BMI.
Nat Inst Nutr Rev, 19 (1992), pp. 1-4
[28.]
J.P. Després.
Abdominal obesity as important compenent of insulin resistance syndrome.
Nutr Rev, 6 (1993), pp. 137-159
[29.]
B. Israelsson.
Role of alcohol, glucose intolerance and obesity in hypertriglyceridaemia.
Atherosclerosis, 62 (1986), pp. 123-127
[30.]
M. Cucuianu, C. Zdrenghea, M. Pop, A. Opincaru.
Increased serum γ-glutamyltransferase in hypertriglyceridaemia: comparison with serum pseudocholinesterase.
Clin Chim Acta, 71 (1976), pp. 419-427
[31.]
K.F. Zwiauez, R. Pakosta, T. Mueller, K. Wildham.
Cardiovascu-lar risk factors in obese children in relation to weight and body fat distribution.
J Am Coll Nutr, 11 (1992), pp. 41-50
[32.]
T.L. Burns, O. Moll, R. Laver.
The relation between ponderosity and coronary risk factors in children and their relatives.
Am J Epidemiol, 129 (1989), pp. 973-987
[33.]
D. Kikuchi, S.R. Srinivasan, D. Harsha, L.S. Webber, T.A. Sellers, G.S. Berenson.
Relation of serum lipoprotein lipids and apolipoproteins to obesity in chidren: the Bogalusa Heart Study.
Prev Med, 21 (1992), pp. 177-190
[34.]
M.A. Staten, W.G. Totty, W.M. Kohrt.
Measurement of fat distribution by magnetic resonance imaging.
Invest Radiol, 24 (1989), pp. 345-349
[35.]
J.L. Lancaster, A.A. Chiatas, A. Alyassin, R.F. Kilcoyne, E. Bonora, R.A. DeFronzo.
Measurement of abdominal fat with T1 weighted magnetic resonance images.
J Magn Reson Imaging, 1 (1991), pp. 363-369
[36.]
S. Caprio, L.D. Hyman, S. McCarthy, R. Lange, M. Bronson, W.V. Tamborlane.
Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot.
Am J Clin Nutr, 64 (1996), pp. 12-17

Este trabajo recoge datos preliminares del proyecto "Estudio metabólico en niños obesos. Relación entre índice antropométrico y factores de riesgo cardiovascular", financiado con una ayuda del Fondo de Investigaciones Sanitarias de la Seguridad Social (FIS 183/1997)

Copyright © 2002. Asociación Española de Pediatría
Download PDF
Idiomas
Anales de Pediatría (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?