Información de la revista
Vol. 56. Núm. 3.
Páginas 224-232 (marzo 2002)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 56. Núm. 3.
Páginas 224-232 (marzo 2002)
Acceso a texto completo
Linfocitos intraepiteliales en la enfermedad celíaca
Intraepithelial Lymphocytes In Celiac Disease
Visitas
17349
P. Eiras Martíneza, F. León Prietoa, E. Roldán Santiagoa, L. Sánchez Muñoza, A. Bootello Gila, G. Roy Ariñoa,
Autor para correspondencia
groy@hrc.insalud.es

Correspondencia: Dra. G. Roy Ariño. Servicio de Inmunología. Hospital Ramón y Cajal. Ctra. Colmenar Viejo, km 9,1. 28034 Madrid.
a Servicios de Inmunología
C. Camarero Salcesb, M. Baragaño Gonzálezb
b Servicios de Pediatría y
A. Asensio Vegasc
c Servicios de Medicina Preventiva. Hospital Ramón y Cajal. Madrid.
P. Eiras Martínezd
d Servicios de Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo CEU. Boadilla. Madrid
Este artículo ha recibido
Información del artículo

La enfermedad celíaca es una intolerancia permanente a los componentes del gluten que cursa con una alteración de la mucosa del intestino delgado generalmente reversible al excluir el gluten de la dieta. La patogenia del proceso es inmunitaria y se sabe que, además de un estrechísimo ligamiento con ciertos alelos HLA, en esta enfermedad existen alteraciones constantes en los linfocitos intraepiteliales (i-LIE). El desarrollo de una técnica para su determinación por citometría de flujo (CMF) nos ha permitido profundizar en el conocimiento de estas alteraciones y utilizar su determinación en el diagnóstico clínico. Nuestra experiencia demuestra que esta prueba presenta una excelente sensibilidad y especificidad en el diagnóstico de la enfermedad celíaca y que su utilidad es especialmente relevante en las presentaciones atípicas de la enfermedad. En este trabajo se resumen los resultados obtenidos y se discuten algunas de las hipótesis que se han vertido acerca de la posible participación de los LIE en la patogenia de la enfermedad.

Palabras clave:
Enfermedad celíaca
Enfermedad celíaca latente
Linfo-citos intraepiteliales TcRgd
Linfocitos intraepiteliales NK- like

Coeliac disease (CD) is a permanent intolerance to gluten that provokes alterations in the mucosa of the small intestine. The disease can usually be controlled by excluding gluten from the diet. CD is immunologically-mediated, with a strong linkage to certain HLA alleles and a permanently altered intraepithelial lymphocytes (IEL) pattern. The development of a flow cytometric technique for the evaluation of IEL subsets has increased our understanding of these alterations and has prepared the ground for its clinical application. Our experience shows that this procedure has excellent sensitivity and specificity in the diagnosis of CD and that it is particularly useful in the evaluation of atypical presentations of the disease. The present article reviews our experience in the diagnosis of CD and discusses some of the hypotheses that have been put forward on the possible role of IEL in its pathogenesis.

Keywords:
Coeliac Disease
Latent coeliac disease
Intraepithelial lymphocytes TcRgd
NK-like Intraepithelial lymphocytes
El Texto completo está disponible en PDF
Bibliografía
[1.]
Dicke W. Coeliakie. [Tesis doctoral]. Universidad de Utrecht, 1950.
[2.]
J.A. Walker-Smith, S. Murch.
Coeliac disease..
Diseases of the small intestine in Childhood., pp. 235-277
[3.]
W.T. Cooke, G.K.T. Holmes.
Churchill Livingstone, (1984),
[4.]
J.A. Churchill Livingstone, S. Guandalini, J. Schmitz, D.H. Shmerling, J.K. Visakorpi.
Revised criteria for diagnosis of coeliac disease. Report of working group of European Society of Pediatric Gastroenterology and Nutrition..
Arch Dis Child, 65 (1990), pp. 909-911
[5.]
A. Spurkland, L.M. Sollid, I. Polanco, F. Vartdal, E. Thorsby.
HLA-DR and -DQ genotypes of celiac disease patients serologically typed to be non-DR3 or non-DR5/7..
Hum Immunol, 35 (1992), pp. 188-192
[6.]
W.E. Barbeau, M.A. Novascome, K.D. Elgert.
Is coeliac disease due to molecular mimicry between gliadin peptide-HLA class II molecule T cell interactions and those of some unidentified superantigenα..
Mol Immunol, 34 (1997), pp. 535-541
[7.]
The central database analysis committee. Allele frecuencies, section 6.3 splits combined (five loci).
The databook of the 11thInternational Histocompatibility Workshop, 2 (1991), pp. 807-814
[8.]
K. Holm, M. Mäki, E. Savilahti, V. Lipsanen, P. Laippala, S. Koskimies.
Intraephitelial gd T cell- receptor Lymphocytes and genetic susceptibility to coeliac disease..
Lancet, 339 (1992), pp. 1500-1503
[9.]
I.R. Korponay-Szabo, J.B. Kovacs, M. Lorincz, G. Goracz, K. Szabados, M. Balogh.
Prospective significance of antiendomysium antibody positivity in subsequently verified celiac disease..
J Pediatr Gastroenterol Nutr, 25 (1997), pp. 56-63
[10.]
T. Kutlu, N. Brousse, C. Rambaud, F. Le Deist, J. Schmitz, N. Cerf- Bensussan.
Numbers of T cell Receptor ab+ but not of TcRgd+ intraepithelial lymphocytes correlate whit the grade of villous atrophy in coeliac patients on a long term normal diet..
Gut, 34 (1993), pp. 208-214
[11.]
E. Savilahti, A. Arata, M. Verkasalo.
Increased numbers of gamma-delta bearing T cells in the epithelium of celiac patients.
Advances in mucosal immunology (ed. TT Macdonald et al) Kluwer, Dordrecht, (1997), pp. 61
[12.]
E. Savilahti, A. Arato, M. Verkasalo.
Intestinal gd receptor bearing T lymphocytes in coeliac disease and inflammatory bowel diseases in children. Constant Increase in celiac disease.
Pediatric Res, 28 (1990), pp. 579-581
[13.]
J. Spencer, P.G. Isaacson, T.C. Diss, T.T. Macdonald.
Expression of disulphide linked and non-disulphide linked form of the T cell receptor Gamma-Delta heterodimer in human intestinal intraepithelial lymphocytes.
Eur J Immunol, 19 (1989), pp. 1335-1341
[14.]
A. Ferguson, H. Gillet, K. Humphreys, K. Kingstone.
Heterogeneity of celiac disease: Clinical, pathological, immunological and genetic.
Ann N Y Acad Sci, 859 (1988), pp. 112-120
[15.]
A. Ferguson, E. Arranz, S. Mahory.
Clinical and pathological spectrum of coeliac disease: Active, silent, latent, potential.
Gut, 34 (1993), pp. 150-151
[16.]
A. De Lecea, C. Ribes-Koninckx, I. Polanco, J.F. Calvete.
Serological screening (antigliadin and antiendomysium antibodies) for non-overt coeliac disease in children of short stature.
Acta Paediatr, (1996), pp. 54-55
[17.]
C. Catassi, E. Fabiani, I.M. Rätsch.
The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school-age subjects.
Acta Paediatr, 85 (1996), pp. 29-35
[18.]
R. Troncone.
Latent coeliac disease in Italy. The SIGEP Working Group on Latent Coeliac Disease. Italian Society for Paediatric Gastroenterology and Hepatology.
Acta Paediatr, 84 (1995), pp. 1252-1257
[19.]
M. Mäki, K. Holm, S. Koskimies, J.K. Visakorpii.
Normal small bowel biopsy followed by coeliac disease.
Arch Dis Child, 65 (1990), pp. 1137-1141
[20.]
M. Barbato, F. Viola, M.R. Miglietta.
Value of AGA in latent celiac disease.
Nápoles: Eighth International Symposium on Coeliac disease, (1999), pp. 207
[21.]
E. Arranz, J. Bode, K. Kingstone, A. Ferguson.
Intestinal antibody pattern of coeliac disease: Association with gamma/delta T cell receptor expression by intraepithelial lymphocytes, and other indices of potential coeliac disease.
Gut, 35 (1994), pp. 476-482
[22.]
E. Arranz, A. Ferguson.
Intestinal antibody pattern of celiac disease: Occurrence in patients with normal jejunal biopsy histology.
Gastroenterology, 104 (1993), pp. 1263-1272
[23.]
E. Arranz, A. Ferguson.
Jejunal fluid antibodies and mucosal gamma/delta IEL in latent and potential coeliac disease.
Adv Exp Med Biol, 371 (1995), pp. 1345-1348
[24.]
R. Troncone, L. Greco, M. Mayer, F. Paparo, N. Caputo, M. Micillo.
Latent and potential coeliac disease.
Acta Paediatr, (1996), pp. 10-14
[25.]
P. Collin, H. Helin, M. Mäki, O. Hallstrom, A.L. Karvonen.
Follow-up of patiens positive in reticulin and gliadin antibody tests whith normal small-bowel biopsy findings.
Scand J Gastroenterol, 28 (1993), pp. 595-598
[26.]
P. Hoang, H.R. Dalton, D.P. Jewell.
Human colonic intra-epithelial lymphocytes are suppressor cells.
Clin Exp Immunol, 85 (1991), pp. 498-503
[27.]
H. Ishikawa, A. Abeliovich, S. Yamamoto, S.H. Kaufman, S. Tonegawa.
Cytotoxic and Interferon-g producing activities of gd T cells in the mouse intestinal epithelium are strain dependent.
Proc Natl Acad Sci (USA), 90 (1993), pp. 8204-8208
[28.]
P. Eiras, E. Roldan, C. Camarero, F. Olivares, A. Bootello, G. Roy.
Flow cytometry description of a novel CD3 CD7+ intraepithelial subset in human duodenal biopsies: Potential diagnostic value in coeliac disease.
Cytometry, 34 (1998), pp. 95-102
[29.]
P. Eiras, F. Leon, C. Camarero, M. Lombardia, E. Roldan, A. Bootello.
Intestinal Intraepithelial Lymphocytes contain a CD3 CD7+ subset expressing natural killer markers and a singular pattern of adhesion molecules.
Scand J Immunol, 52 (2000), pp. 1-6
[30.]
Y. Tanaka, S. Sano, E. Nieves, G. De Libero, D. Rosa, R.L. Modlin.
Nonpeptide ligands for human gd T cells.
Proc Natl Acad Sci (USA), 91 (1994), pp. 8175-8179
[31.]
A. Salerno, F. Dieli.
Role of gamma-delta T lymphocytes in immune response in human and mice.
Crit Rev Immunol, 18 (1998), pp. 327-357
[32.]
G. Multhoff, C. Botzler, R. Issels.
The role of heat shock proteins in the stimulation of an immune response.
Biol Chem, 379 (1998), pp. 295-300
[33.]
M. Sugita, R.M. Jackman, E.P. Grant, J.P. Rosat, S.M. Behar, P.J. Peters.
CD1, a new paradigm for antigen presentation and T cell activation.
Clin Immunol Immunopathol, 87 (1998), pp. 8-14
[34.]
V. Croh.
Recognition of stress-induced MHC molecules by intestinal epithelial gd T cells.
Science, 279 (1998), pp. 1737-1740
[35.]
T. Sakai, k. Kimura, K. Inagaki-Ohaka, D.K. Kusugami, D.H. Lynch, Y. Yoshikai.
Fas-mediated cytotoxicity by intestinal intraepithelial lymphocytes during acute graft-versus-host disease in mice.
Gastroenterology, 113 (1997), pp. 168-174
[36.]
R. Boismenu, W.L. Havran.
Modulation of epithelial cell growth by intraephitelial gd T cells..
Science, 266 (1994), pp. 1253-1255
[37.]
A. Haylay, L. Geng.
gd T cell regulate autoimmunity.
Curr Opin Immunol, 9 (1997), pp. 884-889
[38.]
K. Selmaj, C.F. Brosnan, C.S. Raine.
Colocalization of Lymphocytes bearing gd T cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple esclerosis.
Proc Natl Acad Sci (USA), 88 (1991), pp. 6452-6456
[39.]
E. Keystone, C. Rittershaus, N. Wood, K. Snow, J. Flatow, J. Purvis.
Elevation of a gd T cell subset in peripheral blood and synovial fluid of patients with rheumatoid arthritis.
Clin Exp Immunol, 84 (1991), pp. 78-82
[40.]
L. Wen, M. Peakman, G. Mieli-Vergary, D. Vergani.
Elevation of activated gd T cells in patients with autoimmune liver chronic disease.
Clin Exp Immunol, 89 (1992), pp. 78-82
[41.]
C. Camarero, P. Eiras, A. Asensio, F. Leon, F. Olivares, H. Escobar.
Intraepithelial lymphocytes and coeliac disease: permanent changes in CD3/CD7+ and T cell receptor gd subsets studied by flow cytometry.
Acta Paediatr, 89 (2000), pp. 285-290
[42.]
F. Leon, R. Pena, C. Camarero, L. Sanchez, P. Eiras, A. Del Amo.
Limitations of anti-guinea pig liver transglutaminase IgA in the screening of Coeliac Disease.
Gastroenterology, 120 (2001), pp. 586-587
[43.]
P.A. Krasilnikoff.
Diagnostic criteria: Two or three biopsiesα.
Proc 7th Int Symp on Coeliac Disease, pp. 181-184
[44.]
I. Polanco.
Continuing need for three biopsies in children.
Proc 7th Int Symp on Coeliac Disease, pp. 171-176
[45.]
R. Sciammas, Y. Tatsumi, A.I. Sperling, K. Arunan, J.A. Bluestone.
TcR Gamma-delta cells:Mysterious cells of the immune cells.
Immunol Res, 13 (1994), pp. 268-279
[46.]
K. Fujihashi, T. Taguchi, W.K. Aicher, J.R. McGhee, J.A. Bluestone, J.H. Eldridge.
Immunoregulatory functions for murine intraephitelial lymphocytes: gd T cells abrogate oral tolerance, While ab T cells provice B cell help.
J Exp Med, 175 (1992), pp. 695-707
[47.]
W.E. Barbeau.
Interactions between dietary proteins and the human system: Implications for oral tolerance and food-related diseases.
Adv Exp Med Biol, 425 (1997), pp. 183-193
[48.]
A. Salerno, F. Dieli.
Role of gamma-delta T lymphocytes in immune response in human and mice.
Crit Rev Immunol, 18 (1998), pp. 327-357
[49.]
C.T. Morita, H. Li, J.G. Lamphear, R.R. Rich, J.D. Fraser, R.A. Mariuzza.
Superantigen recognition by gammadelta T cells: SEA recognition site for human Vgamma2 T cell receptors.
Immunity, 14 (2001), pp. 331-344
[50.]
N. Ramesh, A. Horner, D. Ahern, R.S. Geha.
Bacterial superantigens induce the proliferation of resting gamma/delta receptor bearing T cells.
Immunol Invest, 24 (1995), pp. 713-724
[51.]
D. Schuppan.
Current Concepts of celiac disease pathogenesis.
Gastroenterology, 119 (2000), pp. 234-242
[52.]
L. Schallhammer, W. Walcher, R. Wintersteiger, G. Dohr, P. Sedlmayr.
Phenotypic comparison of natural killer cells from peripheral blood and from early pregnancy decidua.
Early Pregnancy, 3 (1997), pp. 15-22
[53.]
D.A. Clark, G. Vince, K.C. Flanders, H. Hirte, P. Starkey.
CD56+ lymphoid cells in human first trimester pregnancy decidua as a source of novel transforming growth factor-beta 2-related immunosuppressive factors.
Hum Reprod, 9 (1994), pp. 2270-2277
[54.]
G. Chaouat, J. Tranchot-Diallo, J.L. Volumenie, E. Menu, G. Gras, G. Delage.
Immune suppression and Th1/Th2 balance in pregnancy revisited: A (very) personal tribute to Tom Wegmann.
Am J Reprod Immunol, 37 (1997), pp. 427-434
[55.]
M.J. Guimond, B. Wang, B.A. Croy.
Engraftment of bone marrow from severe combined immunodeficient (SCID) mice reverses the reproductive deficits in natural killer cell-deficient tg epsilon 26 mice.
J Exp Med, 187 (1998), pp. 217-223
[56.]
T. Yamamoto, Y. Takahashi, N. Kase, H. Mori.
Role of decidual NK cells in patiens with missed abortion: Differences between cases with normal and abnormal chromosome.
Clin Exp Immunol, 116 (1999), pp. 449
Copyright © 2002. Asociación Española de Pediatría
Descargar PDF
Idiomas
Anales de Pediatría
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?