Información de la revista
Vol. 59. Núm. 6.
Páginas 552-558 (diciembre 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 59. Núm. 6.
Páginas 552-558 (diciembre 2003)
Acceso a texto completo
Estado actual de la investigación con células madre
Current Concepts In Stem Cell Research
Visitas
12104
C. Garrido Colino
Autor para correspondencia
cgcolino@teleline.es

Correspondencia: Santa Isabel, 1, 1.° D. 28012 Madrid. España
Pediatra EAP. Panaderas II. Área IX. Fuenlabrada. Madrid. España
Este artículo ha recibido
Información del artículo

En los últimos años, los avances en la investigación con células madre han abierto un campo de esperanza para la curación de enfermedades y la medicina regenerativa. No es raro encontrar noticias en la prensa diaria o en otros medios de comunicación sobre este tema. En este artículo se pretenden aclarar algunos conceptos básicos en el campo de la investigación para entender la literatura médica referente a células madre, y aportar los datos y la bibliografía necesarios para una puesta al día sobre uno de los temas que más publicaciones generan en los últimos tiempos.

Palabras clave:
Célula madre embrionaria
Célula madre adulta
Medicina regenerativa
Terapia celular

In the last few years, advances in stem cell research have opened up new horizons in the treatment of human diseases and in regenerative medicine. It is not unusual to find news on stem cell research in newspapers and other media. This review describes some basic concepts in research needed to understand the medical literature on stem cells and to provide the information and bibliography necessary to be up to date in one of the subjects that has generated the greatest number of publications in the last few years.

Key words:
mbryonic stem cells
Adult stem cells
Regenerative medicine
Cell therapy
El Texto completo está disponible en PDF
Biblografía
[1.]
R. Mc Kay.
Stem cells in the nevous system.
Science, 276 (1997), pp. 66-71
[2.]
M.Y. Cordon, N.M. Blackett.
Reconstruction of the hematopoietic system after stem cell trasplantation.
Cell Transplant, 7 (1998), pp. 339-344
[3.]
B. Scheffler, M. Horn, I. Blumcke, E.E. Lywell, D. Coones, V.G. Kukekov, et al.
Marrow-mindedness: A perspective on neuropoiesis.
Trends Neurosci, 22 (1999), pp. 348-356
[4.]
M.S. Evans, M.H. Kaufman.
Establishment in culture of pluripotential stem from mouse embryos.
Nature, 291 (1981), pp. 154-156
[5.]
A. Bradley, M. Evans, M.H. Kaufman, E. Robertson.
Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.
Nature, 309 (1984), pp. 255-256
[6.]
A.E. Bishop, L.D.K. Buttery, J.M. Polak.
Embryonic stem cells.
J Pathol, 197 (2002), pp. 424-429
[7.]
A.M. Wobus, K. Guan, S. Jin, M.C. Wellner, J. Rohwedel, G. Ji, et al.
Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes.
J Mol Cell Cardiol, 29 (1997), pp. 1525-1539
[8.]
T.C. Doetschman, H.R. Eistetter, M. Katz, W. Schmidt, R. Kemler.
The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac blood islands and myocardium.
J Embryol Exp Morphol, 87 (1985), pp. 27-45
[9.]
M.V. Wiles, G. Keller.
Multiple hematopoietic lineages develop from embryonic stem cells in culture.
Development, 111 (1991), pp. 259-267
[10.]
S.H. Lee, N. Lumelsky, L. Studer, J.M. Auerbach, R.D. McKay.
Efficient generation of midbrain and hinbrain neurons from mouse embryonic stem cells.
Nat Biotechnol, 18 (2000), pp. 675-679
[11.]
V.A. Maltsev, A.M. Wobus, J. Rohwedel, M. Bader, J. Hescheler.
Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents.
Circ Res, 75 (1994), pp. 233-244
[12.]
K. Guan, J. Rohwedel, A.M. Wobus.
Embryonic stem cell differentiation model: Cardiogenesis, myogenesisi, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro.
Cytotechnology, 30 (1999), pp. 211-226
[13.]
A.M. Wobus.
Potential of embrionic stem cells.
Molecular Aspects of Medicine, 22 (2001), pp. 149-164
[14.]
H.M. Blau, T.R. Brazelton, J.M. Weimann.
The Evolving concept of a stem cell: Entity or Function?.
Cell, 105 (2001), pp. 829-841
[15.]
R.A. Malcon, R. Poulsan, S. Forbes, N.A. Wright.
An introdution to stem cells.
J Pathology, 197 (2002), pp. 419-423
[16.]
Q. Ying, J. Nichols, E.P. Evans, E.P. Smith.
Changing potency by spontaneous fusion.
Nature, 416 (2002), pp. 540-548
[17.]
N. Tereda, T. Hamazaki, M. Oka.
Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion.
Nature, 416 (2002), pp. 542-545
[18.]
D.L. Clarke, C.B. Johansson, J. Wilbertz, B. Veress, E. Nilsson, H. Karlstrom, et al.
Generalized potential of adult neural stem cells.
Science, 288 (2000), pp. 1660-1663
[19.]
A.J. Friedenstein.
Osteogenic activity of trasplanted epithelium.
Acta Anat, 45 (1961), pp. 31-59
[20.]
M. Reyes, T. Lund, T. Lenvik, D. Aguiar, L. Koodie, C.M. Verfaillie.
Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.
Blood, 98 (2001), pp. 2615-2625
[21.]
M.F. Pittenger, A.M. Mackay, S.C. Beck.
Multilineage potential of adult human mesenchymal stem cells.
Science, 284 (1999), pp. 143-147
[22.]
G.P. Donald.
Building a Consensus Regarding the Nature and Origin of Mesenchymal Stem Cells.
J Cell Biochem, (2002), pp. 7-12
[23.]
J. Yuehua, N. Balkrishna, R. Jahagidar, S. Lee Reinhardts, E. Robert, C. Schwartz, et al.
Pluripotency of mesenchymal stem cells derived from adult marrow.
Nature, 418 (2002), pp. 41-49
[24.]
M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P.H. Marker, C.M. Verfaillie.
Origin of endothelial progenitors in human postnatal bone marrow.
J Clin Invest, 109 (2002), pp. 337-346
[25.]
P.E. Burger, S. Coetzee, W.L. McKeehan, M. Kan, P. Cook, Y. Fan, et al.
Fibroblast growth factor receptor-1 is expressed by endothelial progenitor cells.
Blood, 100 (2002), pp. 3527-3535
[26.]
G. Condorelli, U. Borello, L. De Angelis, M. Latronico, D. Sirabella, M. Coletta, et al.
Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: implications for myocardium regeneration.
PNAS, 98 (2001), pp. 10733-10738
[27.]
A.R. Yuri.
Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-like Cells from Umbilical Cord.
Stem Cells, 21 (2003), pp. 105-110
[28.]
D. Bonnet.
Haematopoietic stem cells.
J Pathol, 197 (2002), pp. 430-440
[29.]
T.E. Thomas, C.L. Miller, C.J. Eaves.
Purification of hematopoietic stem cells for further biological study.
Methods, 17 (1999), pp. 202-218
[30.]
E.D. Zanjani, G. Almeida Porada, A.G. Livingston, C.D. Porada, M. Ogawa.
Engraftment and multilineage expression of human bone marrow CD34– cells in vivo.
Ann NY Acad Sci, 872 (1999), pp. 220-231
[31.]
K.D. Bunting.
ABC Transporters as Phenotypic Markers and Functional Regulators of Stem Cells.
Stem Cells, 20 (2002), pp. 11-20
[32.]
C.W. Scharenberg, M.A. Harkey, B. Torok-Storb.
The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors.
Blood, 99 (2002), pp. 507-512
[33.]
S. Hughes.
Cardiac stem cells.
J Pathol, 197 (2002), pp. 468-478
[34.]
D. Orlic, J. Kajstura, S. Chimenti, S.M. Bodine, A. Leri, P. Anversa.
Trasplanted adult bone marrow cells repair myocardial infarcts in mice.
Ann N Y Acad Sci, 938 (2001), pp. 221-229
[35.]
D. Orlic, J. Kajstura, S. Chimenti, S.M. Bodine, A. Leri, P. Anversa.
Bone marrow cells regenerate infarcted myocardium.
Nature, 410 (2001), pp. 701-705
[36.]
K.A. Jackson, S.M. Majka, H. Wang.
Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.
J Clin Invest, 107 (2001), pp. 1395-1402
[37.]
D. Orlic, J. Kajstura, S. Chimenti, S.M. Bodine, A. Leri, P. Anversa.
Mobilized bone marrow cells repair the infarcted heart, improving function and survival.
Proc Natl Acad Sci USA, 98 (2001), pp. 10344-10349
[38.]
P.S. Eriksson, E. Perfilieva, T. Bjork-Eriksson, A.M. Albom, C. Nordborg, D.A. Peterson, et al.
Neurogenesis in the adult humanhippocampus.
Nat Med, 4 (1998), pp. 1313-1317
[39.]
F.H. Gage.
Mammalian neural stem cells.
Science, 287 (2000), pp. 1433-1439
[40.]
J.R. Sánchez-Ramos, F. Cardoso-Pelaez, S. Song.
Differentiation of neuron-like cells from bone marrow stromal cells.
Mov Disord, 13 (1998), pp. 122
[41.]
J.R. Sánchez-Ramos, S. Song, F. Cardoso-Pelaez, C. Hazzi, T. Stedeford, A. Willing, et al.
Adult bone marrow stromal differentiate into neural cells in vitro.
Exp Neurol, 164 (2000), pp. 247-256
[42.]
M. Reyes, C.M. Verfaillie.
Characterization of multipotent adult progenito cells, a subpopulation of mesenchymal stem cells.
Ann N Y Acad Sci, 938 (2001), pp. 231-235
[43.]
W. Deng, M. Obrocka, I. Fischer, D.J. Prockop.
In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.
Biochem Biophys Res Commum, 282 (2001), pp. 148-152
[44.]
M.A. Eglitis, E. Mezey.
Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice.
Proc Natl Acad Sci USA, 94 (1997), pp. 4080-4085
[45.]
T.R. Brazelton, F.M.V. Rossi, G.I. Keshet, H.M. Blau.
From marrow to brain: expression of neural phenotypes in adult mice.
Science, 290 (2000), pp. 1775-1779
[46.]
Y. Li, J. Chen, L. Wang, L. Zhang, M. Lu, M. Chopp.
Intracerebral trasplantation of bone marrow stromal cells in a 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
Neurosci Lett, 316 (2001), pp. 67-70
[47.]
Y. Li, M. Chopp, J. Chen, L. Wang, S.C. Gautam, Y.X. Xu, et al.
Intrastriatal trasplantation of bone marrownonhematopoietic cells improves functional recovery after stroke in adult mice.
J Cereb Blood Flow Metab, 20 (2000), pp. 1311-1319
[48.]
J. Chen, Y. Li, M. Chopp.
Intracerebral of bone marrow with BDNF after MCAo in rat.
Neuropharmacology, 39 (2000), pp. 711-716
[49.]
S. Bonner-Weir, A. Sharma.
Pancreatic stem cells.
J Pathol, 197 (2002), pp. 519-526
[50.]
H. Zulewski, E.J. Abraham, M.J. Gerlach.
Multipotential nestinpositive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.
Diabetes, 50 (2001), pp. 521-533
[51.]
J.K. Reddy, M.S. Rao, S.A. Qureshi, M.K. Reddy, D.G. Scarpelli, N.D. Lalwani.
Induction and origin of hepatocytes in rat pancreas.
J Cell Biol, 98 (1984), pp. 2082-2090
[52.]
S. Bonner-Weir, M. Taneja, G.C. Weir.
In vitro cultivation of human islets from expanded ductal tissue.
Proc Natl Acad Sci USA, 97 (2000), pp. 7999-8004
[53.]
J.S. Brockenbrough, G.C. Weir, S. Bonner-Weir.
Discordance of exocrine and endocrine growth after 90 % pancreatectomy in rats.
Diabetes, 37 (1988), pp. 232-236
[54.]
A.E. Butler, J. Janson, S. Bonner-Weir, R. Ritzel, R.A. Rizza, P.C. Butler.
Beta-cell deficit and increased beta-cell apoptosis in human with type 2 diabetes.
Diabetes, 52 (2003), pp. 102-110
[55.]
N. Theise, S. Badve, R. Saxena.
Derivationof hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.
Hepatology, 31 (2000), pp. 234-240
[56.]
M.R. Alison, R. Poulsom, R. Jeffery.
Hepatocytes from non-hepatic adult stem cells.
Nature, 406 (2000), pp. 257
[57.]
N. Theise, M. Nimmakalayu, R. Gardner.
Liver from bone marrow in humans.
Hepatology, 32 (2000), pp. 11-16
[58.]
W. Kleeberger, T. Rothamel, S. Glockner, P. Flemming, U. Lehmann, H. Kreipe.
High frequency of epithelial chimerism in liver tranplants demonstrated by microdissection and STR-analysis.
Hepatology, 35 (2002), pp. 110-116
[59.]
E. Lagasse, H. Connors, M. AL-Dhalimy.
Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.
Nature Med, 6 (2000), pp. 1229-1234
[60.]
T. Yokoo, U. Ohashi, J. Shen.
Genetically modified bone marrow continuosly supplies antiinflammatory cells and suppresses renal injury in mouse Goodpasture syndrome.
Blood, 98 (2001), pp. 57-64
[61.]
G. Cornacchia, A. Fornoni, A.R. Plati.
Glomerulosclerosis is transmited by bone marrow-derived mesangial cell progenitors.
J Clin Invest, 108 (2001), pp. 1649-1656
[62.]
M. Brittan, N.A. Wright.
Gastrointestinal stem cells.
J Pathol, 197 (2002), pp. 492-509
[63.]
D.S. Krause, N.D. Thiese, M.I. Collector.
Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.
Cell, 105 (2001), pp. 369-377
[64.]
D. Kontoyiannis, M. Pasparakis, T.T. Pizarro.
Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies.
Immunity, 10 (1999), pp. 384-398
[65.]
S.R. Targan, S.B. Hanauer, S.J. Van Deventer.
A Short –term study of chimeric monoclonal and mammary gland epithelium.
Am J Pathol, 154 (1999), pp. 29-35
[66.]
B.H. Lipton, E. Schultz.
Developmental fate of skeletalmuscle satellite cells.
Science, 205 (1979), pp. 1292-1294
[67.]
P. Seale, L.A. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss, M.A. Rudnicki.
Pax-7 is required for the specificationof miogenic satellite cells.
Cell, 102 (2000), pp. 777-786
[68.]
J.L. Feldman, F.E. Stockdale.
Temporal appearance of satellite cells during myogenesis.
Dev Biol, 153 (1992), pp. 217-226
[69.]
J.R. Beauchamp, J.E. Morgan, C.N. Pagel, T.A. Partridge.
Dynamic of myoblast trasplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source.
J Cell Biol, 144 (1999), pp. 1113-1122
[70.]
J.R. Beauchamp, C.N. Pagel, T.A. Partridge.
A dual-marker system for quantitative studies of myoblast trasplantation in the mouse.
Trasplantation, 63 (1997), pp. 1794-1797
[71.]
G. Ferrari, G. Cusella de Angelis, M. Coletta.
Muscle regeneration by bone marrow derived myogenic progenitors.
Science, 279 (1998), pp. 1528-1530
[72.]
T.A. Partridge.
The fantastic voyage of muscle progenitor cells.
Nature Med, 4 (1998), pp. 554-555
[73.]
E. Gussoni, Y. Soneoka, C.D. Strickland.
Dystrophin expression in the mdx mouse restored by stem cell trasplantation.
Nature, 401 (1999), pp. 390-394
[74.]
I. Danko, V. Chapman, J.A. Wolff.
The frequency of revertants in mdx mouse genetic model for Duchenne muscular dystrophy.
Pediatr Res, 32 (1992), pp. 128-131
[75.]
D.J. Richard, M. Kassem, T.E. Hefferan, G. Sarkar, T.C. Spelsberg, B.L. Riggs.
Isolation and characterization of osteoblast precursor cells from human bone marrow.
J Bone Miner Res, 11 (1996), pp. 312-324
[76.]
D.N. Kotton, B.Y. Ma, W.V. Cardoso.
Bone marrow derived cells as progenitors of lung alveolar epithelium.
Development, 128 (2001), pp. 5181-5188
[77.]
S. Nilsson, M. Dooner, H. Weier.
Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice.
J Exp Med, 189 (1999), pp. 729-734
[78.]
R. Pereira, M. O'Hara, A. Laptev.
Marrow stromal cells, a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta.
Proc Natl Acad Sci USA, 95 (1998), pp. 1142-1147
[79.]
R. Pereira, K. Halford, M. O'Hara.
Cultured adherent cells from marrow can serve as long –lasting precursor cells for bone, cartilage and lung in irradiated mice.
Proc Natl Acad Sci, 92 (1995), pp. 4857-4861
[80.]
E. Horwitz, D. Prockop, L. Fitzpatrick, W. Koo, J. Mars, M. Brenner.
Osteogenesis imperfecta calls for caution.
Nature Med, 5 (1999), pp. 466-467
[81.]
E. Horwitz, D. Prockop, L. Fitzpatrick, W. Koo, J. Mars, M. Brenner.
Trasplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta.
Nature Med, 5 (1999), pp. 309-313
Copyright © 2003. Asociación Española de Pediatría
Descargar PDF
Idiomas
Anales de Pediatría
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?